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Abstract
The Schrödinger equation in integral form is applied to the one-dimensional
scattering problem in the case of a narrow potential barrier. Since the kernel
can be considered, in a first approximation, separable, an explicit expression
for the propagator is found by means of the complementary error function. The
problem of a particle confined in a half-space and interacting with a narrow
potential barrier is also considered and solved in an approximate way.

PACS numbers: 02.30.Rz, 03.65.Nk

1. Introduction

The spacetime propagator can be considered the most important object in quantum physics;
it governs the time evolution of a dynamical state and naturally enters any kind of time-
dependent problem [1]. We would like to point out that it is more fundamental than the
wavefunction itself, since it is characteristic of the physical system and does not depend on
initial conditions. Its calculation is more difficult, however; suffice it to consider the square
potential: the wavefunctions are well known, but the propagator cannot be expressed in a
simple form. On the other hand, knowledge of the propagator helps to give insight into
the physics of a quantum system. For example, let us think of the tunnelling time for a
potential barrier: in a basic paper on this argument, it is shown that a satisfactory definition
of the tunnelling time can be given just by means of the propagator [2]; considering coupling
effects in quantum tunnelling, it makes it possible to go beyond the perturbative expansion
[3]; studying the interaction of a system with a thermal bath, it accounts in a simple way for
the oscillatory degrees of freedom, thus leading to the concept of effective action [4].

The non-relativistic quantum mechanical propagator can be expressed in several ways.
The most widely known is the ‘spectral decomposition’ method, but also the path-integral
approach is often used. We refer to the literature for a complete discussion on this subject [5],
and limit ourselves to a brief ‘excursus’.
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First, every kind of quadratic Hamiltonian admits an explicit solution, due to the fact that,
in this case, the semiclassical approach is exact [6, 7]. A closed-form solution is also known
for a variety of potentials [7, 8], but for the simplest one, the piecewise-constant potential, the
result is very involute or even missing in the literature. The case of the potential step has been
completely solved by de Carvalho [9], which used the path-decomposition (PDX) technique
[10], in order to express the result as an integral of simpler propagators. The extension to the
square barrier is not, however, a simple task.

The Green function (or energy propagator) for an arbitrary barrier was treated by de Aguiar
[11], in a paper where the calculations are scarcely detailed and the possibility of finding the
propagator by a Fourier transform is only outlined. Finally, we cite a paper of Barut and Duru
[12], where the phase space path integral is used; by a canonical transformation the original
Hamiltonian is removed, so reducing the propagator to a very simple form and obtaining a
surprising result, in view of its compactness and generality. A careful inspection, however,
shows that it is incorrect, due to the fact that the phase space path integral is not invariant under
canonical transformations. It is not the intention here to expand on this subtle matter: the
reader will find simple and well-written considerations in Shulman’s book [13]. In subsequent
years, to our knowledge, no important contribution has been added to the subject. We show in
this paper that the integral Schrödinger equation allows us to find an interesting approximate
expression of the propagator for narrow barriers; in fact, in this case a Fredholm equation of
the second kind with separable kernel is obtained, and the solution easily follows.

2. The integral equation for narrow barriers

Let H0 be an Hamiltonian for which the propagator G0 is known, and V a general potential.
The Schrödinger equation for the system with Hamiltonian H = H0 + V is

ih̄
d

dt
|ψ(t)〉 = H |ψ(t)〉 (1)

where |ψ(t)〉 is the vector representing the dynamical state of our system. Upon differentiating
with respect to τ the expression[

exp − i

h̄
H0(t − τ)

]
|ψ(τ)〉, (2)

with τ < t , and using equation (1), we obtain

d

dτ

[
e− i

h̄
H0(t−τ)|ψ(τ)〉

]
= − i

h̄
e− i

h̄
H0(t−τ)V |ψ(τ)〉. (3)

By integration, it follows at once that

|ψ(t)〉 = e− i
h̄
H0t |ψ(0)〉 − i

h̄

∫ t

0
dτ e− i

h̄
H0(t−τ)V |ψ(τ)〉 (4)

that is the Schrödinger equation in integral form. Let us suppose that H0 corresponds to the
free particle; using the representation where the position variables are diagonal [14] (namely,
passing from the state vectors |ψ(t)〉 to the wavefunctions ψ(x, t)), this equation becomes

ψ(x, t) =
∫ ∞

−∞
dξ ψ0(ξ)G0(x, t; ξ) − i

h̄

∫ t

0
dτ

∫ ∞

−∞
dξ V (ξ, τ )ψ(ξ, τ )G0(x, t − τ ; ξ) (5)

where

G0(x, t; ξ) = 〈x|e− i
h̄
H0t |ξ 〉 =

√
m

2π ih̄t
exp

[
i
m

2h̄

(x − ξ)2

t

]
(6)
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is the propagator for the free particle and ψ0 is the wavefunction for t = 0. The Wick rotation
to imaginary time [3, 10] leads to

ψ(x, t) =
√

m

2πh̄


∫ ∞

−∞
dξ ψ0(ξ)

e− m
2h̄

(x−ξ)2

t√
t

− 1

h̄

∫ t

0
dτ

∫ ∞

−∞
dξ V (ξ, τ )ψ(ξ, τ )

e− m
2h̄

(x−ξ)2

t−τ√
t − τ


 .

(7)

By considering a potential barrier of the form (θ is the step function)

V (x, t) = V (x)[θ(x) − θ(x − a)] (8)

and using the Laplace transformation: L{ψ(x, t)} = ∫ ∞
0 dt ψ(x, t) exp(−st) = ψ(x, s), we

obtain [16]

ψ(x, s) =
√

m

2h̄

[∫ ∞

−∞
dξ ψ0(ξ)

e−
√

2m
h̄

|x−ξ |√s

√
s

− 1

h̄

∫ a

0
dξ V (ξ)ψ(ξ, s)

e−
√

2m
h̄

|x−ξ |√s

√
s

]
. (9)

With the abbreviations

λ = 1

h̄

√
m

2h̄

1√
s
, k =

√
2m

h̄

√
s, φ(x) =

√
m

2h̄

∫ ∞

−∞
dξ ψ0(ξ)

e−
√

2m
h̄

|x−ξ |√s

√
s

(10)

this equation can be written in short as

ψ(x) + λ

∫ a

0
dξ e−k|x−ξ |V (ξ)ψ(ξ) = φ(x) (11)

where the variable s, considered as a parameter, is omitted, since we are now mainly interested
in the space variable x.

If x /∈ [0, a], the kernel is separable: it is, namely, a Pincherle–Goursat (or ‘degenerate’)
kernel [15]. An approximate solution can be found using the fact that, if in the potential (8) the
range a is very small, the kernel in equation (11) can be considered to be nearly everywhere
separable. To see this in detail, let us consider for every /∈ [0, a] the equation

ψ(x) + λ

∫ a

0
dξ f1(x)f2(ξ)ψ(ξ) = φ(x) (12)

with ∫ a

0
dx f1(x)f2(x) = A. (13)

The setting

y =
∫ a

0
dξ f2(ξ)ψ(ξ) (14)

leads to

ψ(x) = φ(x) − λyf1(x) (15)

that is nothing but a shorthand of equation (12); now, let us perform the approximation that
this equation holds for every x. In other words, we simplify the problem by supposing that
the kernel is separable also for x ∈ [0, a]. Therefore, it is possible to substitute equation (15)
into (14):

y =
∫ a

0
dξ f2(ξ)[φ(ξ) − λyf1(ξ)] =

∫ a

0
dξ f2(ξ)φ(ξ) − λAy. (16)
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Therefore

y = 1

1 + λA

∫ a

0
dξ f2(ξ)φ(ξ) and ψ(x) = φ(x) − λ

1 + λA
f1(x)

∫ a

0
dξ φ(ξ)f2(ξ).

(17)

Let us apply this result to equation (11), where the kernel V (ξ) exp(−k|x − ξ |) is separable
only when x /∈ [0, a]. Choosing

f1(x) = e−kx, f2(ξ) = V (ξ) ekξ for x > a,

f1(x) = ekx, f2(ξ) = V (ξ) e−kξ for x < 0,
(18)

the final result is

ψ(x) = φ(x) − λ

1 + λγ

∫ a

0
dξ e−k|x−ξ |V (ξ)φ(ξ), with γ =

∫ a

0
dx V (x). (19)

We point out that the approximation, in this procedure, lies in the substitution of equation (15)
into (14); and the error is as lower, as shorter is the range a.

3. An expression for the short-range potential

Starting from the expansion in a series of derivatives of the Dirac delta function δ(x):

1√
πα

exp

(
−x2

α

)
=

∞∑
n=0

1

n!

(α

4

)n

δ(2n)(x) (20)

that can be proved in the simplest way by taking the Fourier transform [18] of the Taylor series

exp

(
−x2

4
α

)
=

∞∑
n=0

(−1)n

n!

(α

4

)n

x2n, (21)

with reference to the potential (8), this form for V (x) can be considered:

V (x) = U(x)
1√
πα

exp

[
− (x − ā)2

α

]
≈ U(x)

[
δ(x − ā) +

α

4
δ(2)(x − ā)

]
, (22)

with U(x) smooth, ā inside the interval [0, a], and for small values of α. It easily allows for
an approximate analytical solution; in this case

γ =
∫ a

0
dx V (x) =

[
U(x) +

α

4
U(2)(x)

]
x=ā

(23)

where a well-known formula is used [18]:∫ ∞

−∞
dx δ(n)(x)f (x) = (−1)nf (n)(0). (24)

4. The explicit form of the propagator

Let us suppose that ψ0 is different from zero on the left-hand side of the barrier only; by
introducing into equation (19) the explicit expressions of φ(x), λ and k (see equation (10))
and restoring the variable s, we have

ψ(x, s) = c

2

∫
dη

[
e−c|x−η|√s

√
s

− c

2h̄

∫ a

0
dξ V (ξ)

e−c(|x−ξ |+ξ−η)
√

s

√
s(

√
s + β)

]
ψ0(η) (25)
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where

c =
√

2m

h̄
, β = c

2

γ

h̄
(26)

and V (x) is given by equation (22).
Performing the inversion L−1 to obtain ψ(x, t) from equation (25), recalling the definition

of the propagator G

ψ(x, t) =
∫

dη G(x, t; η)ψ0(η), (27)

and comparing these two expressions, G follows at once: we go directly from the
‘wavefunction’ picture to the ‘propagator’ picture for our system. The propagator, for η < 0
and x outside the barrier, turns out to be (recall the definition (6) for G0):

G(x, t; η) = G0(x, t; η) − c2

4h̄

∫ a

0
dξ V (ξ)L−1

{
e−c(|x−ξ |+ξ−η)

√
s

√
s(

√
s + β)

}
(28)

holding for the transmission as well as for the reflection. Since [16]

L−1

{
e−ρ(ξ)

√
s

√
s(

√
s + β)

}
= eβ2t+ρ(ξ)β erfc

[
ρ(ξ)

2
√

t
+ β

√
t

]
, ρ(ξ) = c(|x − ξ | + ξ − η),

(29)

where (erfc) is the complementary error function [17], using equations (22) and (24) the final
result is easily found in closed form. Let us now separate the two cases, according to whether
x > a (transmission) or x < 0 (reflection). The first is simpler, due to the fact that ξ disappears
in the exponent (ρ(ξ) = x − η). For the sake of clarity, we repeat the steps (25)–(28):

ψT (x, s) = c

2

∫
dη

[
e−c(x−η)

√
s

√
s

− β
e−c(x−η)

√
s

√
s(

√
s + β)

]
ψ0(η) = c

2

∫
dη

e−c(x−η)
√

s

√
s + β

ψ0(η) (30)

giving [16]

GT (x, t; η)= c

2
L−1

{
e−c(x−η)

√
s

√
s + β

}
= G0(x, t; η)− c

2
β eβ2t + c(x−η)β erfc

[
c(x − η)

2
√

t
+ β

√
t

]
.

(31)

For the reflection, ρ(ξ) = 2ξ − x − η, and one easily obtains

GR(x, t; η) = G0(x, t; η) − c2

4h̄
eβ2t

{
U(ā) ec(2ā−x−η)β erfc

(
2ā − x − η

2
√

t
+ β

√
t

)

− α

4

d2

dξ 2

[
U(ξ) ec(2ξ−x−η)β erfc

(
c(2ξ − x − η)

2
√

t
+ β

√
t

)]
ξ=ā

}
. (32)

These equations generalize the results of [19] for a δ-like potential.

5. A more complicated system

An interesting application is now shown, observing that H0 is not necessarily the free-particle
Hamiltonian, but a general one, to which the potential V is added. Therefore, the following
Hamiltonian can be considered:

H0 = Hfree +

{
V = ∞ for x < 0
V = 0 for x > 0

(33)
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ψ
0

xa b

V
V

=

8

a

GT

Figure 1. Transmission of a particle with initial wavefunction ψ0 across the potential described in
the text.

plus the potential

V (x, t) = V (x)[θ(x − a) − θ(x − b)], b > a > 0 (34)

that appears in nuclear physics problems, as the virtual level theory of alpha decay [20]. This
physical arrangement is shown in figure 1.

It is well known that in this case [13]

G0(x, t; η) = Gfree(x, t; η) − Gfree(x, t;−η) (35)

where Gfree is defined by equation (6); the integral equation (11) now takes the form

ψ(x) + λ

∫ b

a

dξ [e−k|x−ξ | − e−k|x+ξ |]V (ξ)ψ(ξ) = φ(x) (36)

φ(x) being defined as

φ(x) = c

2

∫ ∞

−∞
dξ ψ0(ξ)

e−c|x−ξ |√s − e−c|x+ξ |√s

√
s

. (37)

If V (x) is the same as (22), where now ā ∈ [a, b], and the range (b − a) is short, the kernel
can be considered again of the Pincherle–Goursat type. From the general theory [15] it is
known that, following a procedure analogous to that used in the steps (12)–(17), the problem
can be reduced to the solution of a (2 × 2) algebraic system; the calculation is quite simple
and the final result reads

ψ(x) = φ(x) − λ

1 + λ(γ − γ̃ )

∫ b

a

dξ [e−k|x−ξ | − e−k|x+ξ |]V (ξ)φ(ξ) (38)

with

γ =
∫ b

a

dx V (x) given, as before, by
[
U(x) +

α

4
U(2)(x)

]
x=ā

, (39)

and

γ̃ =
∫ b

a

dx e−2kxV (x)= U(ā) e−2kā +
α

4

d2

dx2
[U(x) e−2kx]x=ā = e−2kā(γ − kµ + k2ν) (40)

where

µ = αU ′(ā), ν = αU(ā). (41)

The propagator is therefore (η < 0; see equation (35) for G0)

G(x, t; η) = G0(x, t; η) − c2

4h̄

∫ b

a

dξ V (ξ)L−1

{
e−c(|x−ξ |+ξ−η)

√
s − e−c(x−η+2ξ)

√
s

√
s(

√
s + β̃)

}
(42)
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with β̃ given by (recall equation (26) for the definition of β)

β̃ = c

2

γ − γ̃

h̄
= β − c

2

γ̃

h̄
(43)

and the two cases of transmission and reflection are easily derived. The inversion is now
difficult, since γ̃ depends on s (as k = c

√
s). One can, however, proceed in an approximate

way: for example, if the barrier is far from the origin, the problem becomes more tractable.
We consider in some detail this case, giving somewhat simple formulae for the transmission
propagator GT . First, we rewrite GT in the form

GT (x, t; η) = c

2
L−1

{
e−c(x−η)

√
s

√
s + β̃

− e−c(x+η)
√

s

√
s

}
(44)

that can be easily obtained from equation (42) writing G0 by its Laplace transform, observing
that, in the transmission (|x − ξ | + ξ − η) = (x − η), and recalling definitions (39) and (40).
The path integration in the complex s-plane to perform the Laplace inversion is the line from
(σ0 − i∞) to (σ0 + i∞), σ0 > 0 [21]; it is easy to see that, on this line, Re

√
s > 0, so that, if

the barrier is far from the origin, one has |exp(−2āc
√

s)| � 1. Therefore, a series expansion
allows us to write, by means of equations (43) and (40),

(
√

s + β̃)−1 ≈ (
√

s + β)−1 +
e−2āc

√
s

(
√

s + β)2

(
β − c2µ

2h̄

√
s +

c3ν

2h̄
s

)
. (45)

Substituting into equation (44), a short calculation leads to

GT (x, t; η) ≈ c

2
L−1

{
e−c(x−η)

√
s

√
s + β

− e−c(x+η)
√

s

√
s

}
+

c3µ

4h̄

∂

∂β
L−1

{ √
s√

s + β
e−c(x−η+2ā)

√
s

}

− c4ν

4h̄

∂

∂β
L−1

{
s√

s + β
e−c(x−η+2ā)

√
s

}
− c

2
β

∂

∂β
L−1

{
e−c(x−η+2ā)

√
s

√
s + β

}
(46)

and, since the inverse Laplace transforms are known [16], the result is

GT (x, t; η) ≈ G0(x, t; η) − c

2
β eβ2t+cβ(x−η)erfc

[
c(x − η)

2
√

t
+ β

√
t

]

+
c3µ

4h̄

∂

∂β

{[
c(x − η + 2ā)

2
√

t
− β

√
t

]
e−c2(x−η+2ā)2/4t

√
πt

+ β2 eβ2t+cβ(x−η+2ā)erfc

[
c(x − η + 2ā)

2
√

t
+ β

√
t

]}

− c4ν

4h̄

∂

∂β

{[
c2(x − η + 2ā)2

4t
− 1

2
cβ(x − η + 2ā) + β2t − 1

2

]
e−c2(x−η+2ā)2/4t

√
πt3/2

− β3 eβ2t+cβ(x−η+2ā) erfc

[
c(x − η + 2ā)

2
√

t
+ β

√
t

]}

− c

2
β

∂

∂β

{
e−c2(x−η+2ā)2/4t

√
πt

− β eβ2t+cβ(x−η+2ā)erfc

[
c(x − η + 2ā)

2
√

t
+ β

√
t

]}
.

(47)

Recall that our formulae are written for imaginary time; to obtain the propagator in real
time, the change t → it must be performed. Therefore, although this expression can seem
a quite standard one, one has really to deal with the (erfc) of a complex argument, and the
computation is not elementary [17].
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We eventually observe that also three-dimensional problems can be afforded, using an
expansion in spherical harmonics [22]; this method applies to short-range potentials, in a
particularly simple way for S-states.

6. Conclusions

The Schrödinger equation in integral form has been used in a one-dimensional model to find
the propagator for narrow potential barriers. Applying some methods of integral equation
theory, and assuming that the kernel can be considered everywhere separable (approximation
holding in the case of a narrow barrier), a closed form for the propagator is obtained. The more
difficult situation of a particle lying in a half-space and interacting with a potential barrier
is also considered and solved in an approximate way when the barrier is far from the origin.
The simple expressions so obtained, especially in the transmission case, show that the theory
based on the integral equation is far more useful and important than the mere mathematical
equivalence with the ordinary method would have suggested. It is therefore possible that this
approach, not widely used up to now, can lead to other interesting results.
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